Скачать 208.04 Kb.
Дата15.05.2019
Размер208.04 Kb.
ТипКонспект

Лекция Основные этапы развития информационнго общества



Дисциплина: История

Дата: 25 ноября 2017 г.

Преподаватель: Сурикова Наталья Павловна
Раздел 1. Всеобщая история.

Тема 1. 4. От Новой к Новейшей истории: поиск путей развития индустриального общества.

Теоретическое задание: Внимательно прочитайте учебный материал, составьте конспект «Информационная революция и «информационное общество»» в учебной тетради по следующему плану:

1. Этапы информационных революций.

2. Этапы развития вычислительной техники.

3. Отличительные черты информационного общества.



Практическое задание: заполнить таблицу «Четыре поколения ЭВМ».


Поколение (время)

Элементная база

Характеристики

Представители

1 - сер. 1940 - конец 1950 г.г.










2 -










3 -










4 -











Материальное обеспечение:

Хачатурян, В.М. История мировых цивилизаций. - с. 491-496



Тема: Основные этапы развития информационного общества
В истории развития цивилизации произошло несколько информационных революций — преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность для накопления и распространения знаний от поколения к поколению.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Возникла возможность сделать информацию массово-доступной, а не только ее сохранять. Грамотность стала явлением, охватившим широкие массы народа. Произошло ускорение роста науки и техники, приведшее к промышленной революции. Книги перешагнули национальные границы, что привело к началу создания общечеловеческой цивилизации.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации), сильно изменившие системы хранения и поиска информации. Четвертая информационная революция произвела существенные перемены в развитии общества, появился новый термин «информационное общество». Этот период характеризуют три фундаментальные инновации:

•переход от механических и электрических средств преобразования информации к электронным;

•миниатюризация всех узлов, устройств, приборов, машин;

•создание программно-управляемых устройств и процессов.

Последняя информационная революция выдвигает на передний план новую отрасль — информационную индустрию, связанную с производством технических средств, методов, технологий для производства новых знаний. Важнейшая составляющая информационной индустрии — информационная технология.



История развития информационных технологий и

вычислительной техники.

История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, дележ добычи, обмен – все подобные действия связаны со счетом. Для подсчетов люди использовали собственные пальцы, камешки, палочки, узелки и пр.

Потребность в поиске решений все более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые смогли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объемов, расстояния и т. п. Для перевода из одной системы измерений в другую требовались вычисления, которые чаще всего могли производить лишь специально обученные люди, постигшие логику математических действий. Их нередко приглашали даже из других стран. И совершенно естественно возникла потребность в изобретении устройств, помогающих счету. Так постепенно стали появляться механические помощники. До наших дней дошли свидетельства о многих таких изобретениях, навсегда вошедших в историю техники.

Этапы развития вычислительной техники

Ручной период автоматизации вычислений начался на заре человеческой цивилизации. Он базировался на использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности (V-IV вв. до н. э.). Вычисления на ней проводились перемещением костей или камешков в углублениях досок из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. Использование абака предполагает выполнение вычислений по разрядам, т.е. наличие некоторой позиционной системы счисления, автоматизации.

В
Рис. 1. Русский щот


Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев – «суан-пан».

В Древней Руси при счете применялось устройство, похожее на абак.

Называлось оно «русский щот». В XVII веке этот прибор уже обрел вид привычных русских счетов, которые можно кое-где встретить и сегодня (рис. 1).

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. Вот наиболее значимые результаты, достигнутые на этом пути. 1623 г. — немецкий ученый В. Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций над шестиразрядными числами.


Рис. 2. Паскалина
В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода. В 1642г. молодой французский математик и физик Блез Паскаль создал первую восьмиразрядную «суммирующую» машину (рис. 2), названную Паскалиной, которая кроме сложения выполняла и вычитание.

В 1670-1680 годах немецкий математик Готфрид Лейбниц

сконструировал счетную машину (рис. 3), которая выполняла все четыре арифметических действия – первый арифмометр. Арифмометры использовались для практических вычислений вплоть до шестидесятых годов XX века.

В течение следующих двухсот лет было изобретено и построено еще несколько подобных счетных устройств, которые из-за своих недостатков, в том числе медлительности в работе, не получили широкого распространения. Лишь в 1878 году русский ученый П. Чебышев предложил счетную машину, выполнявшую сложение и вычитание многозначных чисел. Наибольшую популярность получил тогда арифмометр, сконструированный

п
Рис. 3. Машина Лейбница
етербургским инженером Однером в 1874 году.

Конструкция прибора оказалась весьма удачной, позволяла довольно быстро выполнять все четыре арифметических действия. В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр – «Феликс». Эти счетные устройства использовались несколько десятилетий, став основным техническим средством, облегчающим труд людей, связанных с обработкой больших массивов числовой информации.

Важным событием XIX века было изобретение английского математика Чарлза Беббиджа, который вошел в историю как создатель первой вычислительной машины – прообраза настоящих компьютеров. В 1812 году он начал работать над так называемой «разностной» машиной. Предшествующие вычислительные приборы Паскаля и Лейбница выполняли только арифметические действия. Беббидж же стремился сконструировать машину, которая выполняла бы определенную программу, проводила бы расчет числового значения заданной функции. В качестве основного элемента своей машины Беббидж ввел зубчатое колесо – для запоминания одного разряда десятичного числа. В результате он смог оперировать 18-разрядными числами. К 1822 году ученый построил небольшую действующую модель и
Рис. 4.

Аналитическая машина

Беббижда

рассчитал на ней таблицу квадратов.

Совершенствуя разностную машину, Беббидж приступил в 1833 году к разработке «аналитической машины» (рис. 4). Она должна была отличаться большей скоростью при более простой конструкции, нежели прежняя «разностная» машина. Согласно проекту, новую машину предполагалось приводить в действие силой пара.

Аналитическая машина была задумана как чисто механическая машина с тремя основными блоками. Первый блок – устройство для хранения чисел на регистрах из зубчатых колес и система, которая передает эти числа от одного узла к другому (в современной терминологии – это память). Второй блок – устройство, позволяющее выполнять арифметические операции. Беббидж назвал его «мельницей». Третий блок предназначался для управления последовательностью действий машины. В конструкцию аналитической машины входило также устройство для ввода исходных данных и печати полученных результатов.

Предполагалось, что машина будет действовать по программе, которая задавала бы последовательность выполнения операций и передачи чисел из памяти в мельницу и обратно. Программы, в свою очередь, должны были кодироваться и переноситься на перфокарты. В те времена подобные карты уже применялись для автоматического управления ткацким станком. Тогда же математик леди Ада Лавлейс – дочь английского поэта лорда Байрона – разрабатывает первые программы для машины Беббиджа. Она заложила многие идеи и ввела ряд понятий и терминов, которые используются и сегодня.

К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован. Тем не менее, его изобретение имело важное значение: многие последующие изобретатели воспользовались идеями придуманных им устройств.



  • Э
    Рис. 5. Табулятор
    лектромеханический этап
    развития вычислительной техники явился наименее продолжительным и охватывает около 60 лет — от первого табулятора Г. Холлерита до первой ЭВМ "ENIAC”. 1887 г. — создание Г. Холлеритом в США первого счетно-аналитического комплекса, состоящего из ручного перфоратора, сортировочной машины и табулятора (рис.5). Одно из наиболее известных его применений — обработка результатов переписи населения в нескольких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, положивших начало известной корпорации IBM (1924г.). В 30-е годы XX века идет разработка счетноаналитических комплексов, на базе которых создаются вычислительные центры. В это же время развиваются аналоговые машины. 1930 г. - В. Буш разрабатывает дифференциальный анализатор, использованный в дальнейшем в военных целях. 1937 г. — Дж. Атанасов, К. Берри создают электронную машину ABC. 1944 г. — Г. Айкен разрабатывает и создает управляемую вычислительную машину MARK-1. В дальнейшем было реализовано еще несколько моделей.1957 г. — последний крупнейший проект релейной вычислительной техники — в СССР создана РВМ-I, которая эксплуатировалась до 1965 г.

Огромное влияние на развитие вычислительной техники оказали теоретические разработки математиков: англичанина А. Тьюринга и американца Э. Поста. «Машина Тьюринга (Поста)» – прообраз программируемого компьютера. Эти ученые показали принципиальную возможность решения автоматами любой проблемы при условии, что ее можно представить в виде алгоритма с учетом выполняемых в машине операций.



  • Электронный этап связан с созданием в США в конце 1945г. электронной вычислительной машины для решения задач ENIAC (ENIAC – Electronic Numerical Integrator and Calculator, в переводе «электронный численный интегратор и калькулятор») (рис. 6). В истории развития ЭВМ принято выделять несколько поколений, каждое из которых имеет свои отличительные признаки и уникальные характеристики.

Рис. 6. ЭНИАК



Поколение ЭВМ - это все типы и модели электронно-вычислительных машин, разработанные различными конструкторскими коллективами, но построенные на одних и тех же научных и технических принципах
ПЕРВОЕ ПОКОЛЕНИЕ ЭВМ (1946 – середина 1950-х годов).

Элементной базой служат электронно-вакуумные лампы (рис. 7), устанавливаемые на специальных шасси, а также резисторы и конденсаторы. Элементы соединяли проводами навесным монтажом. В ЭВМ ЭНИАК было 20 тыс. электронных ламп, из которых ежемесячно заменялось 2000. За одну секунду машина выполняла 300 операций умножения или же 5000 сложений многоразрядных чисел.

В
Рис. 7. Электровакуумные

лампы
ыдающийся математик Джон фон Нейман и его коллеги в своем отчете изложили основные принципы логической

структуры ЭВМ нового типа, затем реализованные в проекте ЭДВАК (1950). Они утверждали, что ЭВМ должна создаваться на электронной основе и работать в двоичной системе счисления. В ее состав необходимо вводить устройства: арифметическое, центральное для управления, запоминающее, для ввода данных и вывода результатов. Ученые также сформулировали два принципа работы: принцип программного управления с последовательным выполнением команд и принцип хранимой программы. Конструкция большинства ЭВМ последующих поколений, где были реализованы эти принципы, получила название «фон-неймановской архитектуры».

Первая отечественная ЭВМ была создана в 1951 году под руководством академика С. А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина). Затем в эксплуатацию вводится БЭСМ-2 (большая электронная счетная машина). Самой мощной ЭВМ 50-х годов в Европе стала советская ЭВМ М-20 с быстродействием 20 тыс. оп/с, объем оперативной памяти – 4000 машинных слов.

С этого момента начался бурный расцвет отечественной вычислительной техники, и к концу 1960-х годов в нашей стране успешно функционировала лучшая ЭВМ того времени по производительности (1 млн оп/с) – БЭСМ-6, в которой были реализованы многие принципы работы последующих поколений компьютеров.

С появлением новых моделей ЭВМ произошли изменения и в наименовании этой сферы деятельности. Ранее в качестве общего названия для всей техники, призванной помогать человеку при вычислениях, использовали определение «счетно-решающие приборы и устройства». Теперь все, что имеет отношение к ЭВМ, образует класс, получивший название «вычислительная техника».



Характерные черты ЭВМ первого поколения:

Элементная база: электронно-вакуумные лампы, резисторы, конден­саторы. Соединение элементов – навесной монтаж проводами.

Габариты: ЭВМ выполнена в виде громоздких шкафов и занимает специальный машинный зал.

Быстродействие: 10–20 тыс. оп/с.

Эксплуатация слишком сложна из-за частого выхода из строя. Существует опасность перегрева ЭВМ.

Программирование: трудоемкий процесс в машинных кодах. При этом необходимо знать все команды машины, их двоичное пред­ставление, а также различные структуры ЭВМ. Этим в основном были заняты математики-программисты, которые непосредственно и работали на ее пульте управления. Общение с ЭВМ требовало от специалистов высокого профессионализма.


ВТОРОЕ ПОКОЛЕНИЕ ЭВМ (от конца 1950-х до конца 1960-х годов.)

Был изобретен транзистор, который пришел на смену электронным лампам. Это позволило изменить элементную базу ЭВМ на полупроводниковые элементы (транзисторы, диоды), а также резисторы и конденсаторы более совершенной кон­струкции (рис.8). Один транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надежнее. Средний срок его службы в 1000 раз превосходил продолжительность работы электронных ламп.

Изменилась и технология соединения элементной базы. Появились первые печатные

п


Рис. 8. Транзисторы, диоды, резисторы, конденсаторы и печатные платы
латы – пластины из изоляционного материала, например,

гетинакса, на которые специальная технология фотомонтажа позволяла наносить токопроводящий материал. Для закрепления элементной базы на них имелись специальные гнезда.

Такая формальная замена одного типа элементов на другой существенно повлияла на все характеристики ЭВМ: габариты, надежность, производительность, условия эксплуатации, стиль программирования и работы на машине и пр. Изменился технологический процесс изготовления ЭВМ.

Характерные черты ЭВМ второго поколения:

Элементная база: полупроводниковые элементы. Соединение элементов – печатные платы и навесной монтаж.

Габариты: ЭВМ выполнены в виде однотипных стоек, чуть выше человеческого роста. Для их размещения требуется специально оборудованный машинный зал, в котором под полом прокладываются кабели, соединяющие между собой многочисленные автономные устройства.

Производительность: до 1 млн оп/с.

Эксплуатация: упростилась. Появились вычислительные центры с большим штатом обслуживающего персонала, где устанавливались обычно несколько ЭВМ. Так возникло понятие централизованной обработки информации на компьютерах. При выходе из строя нескольких элементов производилась замена целиком всей платы, а не каждого элемента в отдельности, как в ЭВМ предыдущего поколения.

Программирование: существенно изменилось, т. к. велось преимущественно на алгоритмических языках. Программисты уже не работали в зале, а отдавали свои программы на перфокартах или магнитных лентах специально обученным операторам. Решение задач производилось в пакетном (мультипрограммном) режиме, т. е. все программы вводились в ЭВМ подряд друг за другом, и их обработка велась по мере освобождения соответствующих устройств. Результаты решения распечатывались на специальной перфорированной по краям бумаге.

• Произошли изменения как в структуре ЭВМ, так и в принципе ее организации. Жесткий принцип управления заменился микропрограммным. Для реализации принципа программируемости необходимо наличие в компьютере постоянной памяти, в ячейках которой постоянно хранятся коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, т.е. подключить определенные электрические схемы. Введен принцип разделения времени, который обеспечил совмещение во времени работы разных устройств, например, одновременно с процессором работает устройство ввода-вывода с магнитной ленты.
ТРЕТЬЕ ПОКОЛЕНИЕ ЭВМ (к.1960х- к.1970х г.г.)

Подобно тому, как возникновение транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало новый этап в развитии вычислительной техники – рождение машин третьего поколения.

В
Рис. 9. Интегральные схемы
1958 году Джон Килби впервые создал опытную интегральную схему. Такие схемы могут содержать десятки, сотни и даже тысячи транзисторов и других элементов, которые физически неразделимы. Интег­ральная схема (рис. 9) выполняет те же функции, что и аналогичная ей схема на элементной базе ЭВМ второго поколения, но при этом существенно уменьшаются размеры и увеличивается надежность работы.

Первой ЭВМ, выполненной на интегральных схемах, была IBM-360. Она положила начало большой серии моделей, название которых начиналось с IBM, а далее следовал номер. Совершенствование моделей этой серии находило отражение в ее номере. Чем он больше, тем больше возможности, предоставляемые пользователю.

Аналогичные ЭВМ стали выпускать и в СССР, Болгарии, Венгрии, Чехословакии, ГДР, Польше. Выпускались два семейства ЭВМ:

• большие – ЕС ЭВМ (единая система), например, ЕС-1022, ЕС-1035, ЕС-1065;

• малые – СМ ЭВМ (система малых), например, СМ-2, СМ-3, СМ-4.

В
Рис. 10. ЕС ЭВМ


то время любой вычислительный центр оснащался одной или двумя моделями ЕС ЭВМ. Представителей семейства СМ ЭВМ, составляющих класс миниЭВМ, можно было довольно часто встретить в лабораториях, на производстве, на технологических линиях, на испытательных стендах.

Особенность этого класса ЭВМ в том, что все они могли работать в реальном масштабе времени, т. е. ориентируясь на конкретную задачу.



Характерные черты ЭВМ третьего поколения:

Элементная база – интегральные схемы, которые вставляются в специальные гнезда на печатной плате.

Габариты: внешнее оформление ЕС ЭВМ (рис. 10) схоже с ЭВМ второго поколения. Для их размещения также требуется машинный зал. А малые ЭВМ – это, в основном, две стойки приблизительно в полтора человеческих роста, дисплей. Они не нуждались, как ЕС ЭВМ, в специально оборудованном помещении.

Производительность: сотни тысяч – миллионы операций в секунду.

Эксплуатация: несколько изменилась. Более оперативно производится ремонт стандартных неисправностей, но из-за большой сложности системной организации требуется штат высококвалифицированных специалистов. Незаменимую роль играет системный программист.

Технология программирования и решения задач: такая же, как на предыдущем этапе, хотя несколько изменился характер взаимодействия с ЭВМ. Во многих вычислительных центрах появились дисплейные залы, где каждый программист в определенное время мог подсоединиться к ЭВМ в режиме разделения времени. Как и прежде, основным оставался режим пакетной обработки задач.

• Произошли изменения в структуре ЭВМ. Наряду с микропрограммным способом управления, используются принципы модульности и магистральности. Принцип модульности проявляется в построении компьютера на основе набора модулей – конструктивно и функционально законченных электронных блоков в стандартном испол­нении. Под магистральностью понимается способ связи между модулями компьютера, т. е. все входные и выходные устройства подсоединены одними и теми же проводами (шинами). Это прообраз современной системной шины.

• Увеличились объемы памяти. Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.


ЧЕТВЕРТОЕ ПОКОЛЕНИЕ

Этот период оказался самым длительным – от конца 1970-х годов по настоящее время, и характеризуется он всевозможными новациями, приводящими к существенным изменениям, например, для обработки информации используется одновременно несколько процессоров (мультипроцессорная обработка).

Новые технологии создания интегральных схем позволили разработать ЭВМ четвертого поколения на больших интегральных схемах (БИС), степень интеграции которых составляет десятки и сотни тысяч элементов на одном кристалле. Наиболее крупным сдвигом в электронно-вычислительной технике, связанным с применением БИС, стало создание микропроцессоров. Сейчас этот период расценивается как революция в электронной промышленности. Первый микропроцессор был создан фирмой Intel в 1971 году. На одном кристалле удалось сформировать минимальный по составу аппаратуры процессор, содержащий 2250 транзисторов.

С появлением микропроцессора связано одно из важнейших событий в истории вычислительной техники – создание и применение персональных ЭВМ, что даже повлияло на терминологию. Постепенно столь прочно укоренившееся название ЭВМ сейчас заменилось на всем привычное слово – компьютер, а соответствующая техника, прежде называемая вычислительной, стала именоваться компьютерной.

Широкая продажа на рынке персональных ЭВМ связана с именами молодых американцев С. Джобса и В. Возняка, основателей фирмы «Эпл компьютер» (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров «Apple» (от англ. «яблоко»). В этом типе компьютера за основу был взят принцип создания «дружественной» обстановки работы человека на ЭВМ, когда при создании программного обеспечения одним из основных требований стало обеспечение удобной работы пользователя. ЭВМ повернулась лицом к человеку. Дальнейшее ее совершенствование шло с учетом удобства работы пользователя. Если раньше при эксплуатации ЭВМ был реализован принцип централизованной обработки информации, когда пользователи концентрировались вокруг одной ЭВМ, то с появлением персональных компьютеров произошло обратное движение – децентрализация, когда один пользователь может работать с несколькими компьютерами.

С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена. IBM выпустила документацию по аппаратуре и программные спецификации, что позволило другим фирмам разрабатывать как аппаратное, так и программное обеспечение. Таким образом, появились семейства (клоны) «двойников» персональных компьютеров IBM.

В 1984 году фирмой IBM был разработан персональный компьютер на базе микропроцессора 80286 фирмы Intel с шиной архитектуры промышленного стандарта – ISA (Industry Standart Architecture). С этого времени началась жесткая конкуренция нескольких корпораций по производству персональных компьютеров. Гонка в поиске все более и более совершенных технических характеристик всех устройств компьютера продолжается и по сей день.

Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей.



Информационное общество.
Информационное общество — общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы — знаний. Информация становится предметом всеобщего потребления. Информационное общество обеспечивает любому субъекту доступ к любому источнику информации. Появляются новые критерии оценки уровня развития общества — количество компьютеров, количество подключений к Интернету, количество мобильных и стационарных телефонов и т.д.

Отличительные черты информационного общества:

  • увеличение роли информации, знаний и информационных технологий в жизни общества;

  • возрастание числа людей, занятых информационными технологиями, коммуникациями и производством информационных продуктов и услуг, рост их доли в валовом внутреннем продукте;

  • нарастающая информатизация общества с использованием телефонии, радио, телевидения, сети Интернет, а также традиционных и электронных СМИ;

  • создание глобального информационного пространства, обеспечивающего:

- эффективное информационное взаимодействие людей;

- их доступ к мировым информационным ресурсам;

- удовлетворение их потребностей в информационных продуктах и услугах;


  • развитие электронной демократии, информационной экономики, электронного государства, электронного правительства, цифровых рынков, электронных социальных и хозяйствующих сетей;

Своим названием термин «информационное общество» обязан профессору Токийского технологического института Ю. Хаяши, чей термин был использован в появившихся практически одновременно — в Японии и США — в работах Ф. Махлупа (1962) и Т. Умесао (1963).

В 1980-1990-е годы философы и социологи разрабатывают теорию информационного общества. В этой работе объединились усилия таких известных философов, как Йошита Масуда, Збигнев Бжезинский, Дж. Нэсбитт, М. Порат, Т. Стоунер, Р. Карц и др.

Телекоммуникационная революция начинается с середины 1970-х и сливается с компьютерной. Компьютерная революция начинается гораздо раньше и протекает в несколько этапов.


  • Первый этап занимает 1930-1970 годы, который называют «нулевым циклом». Он начинается с создания первых ЭВМ в которых на смену механическим деталям пришли электронные лампы.

  • Второй этап компьютерной революции начинается с создания первых персональных компьютеров, использующих интегральные схемы, и их серийного производства.

Телекоммуникационная революция связана с появлением волоконно-оптических технологий и спутниковых технологий.

Слияние телекоммуникационных и компьютерной технологий породило на рынке много новых товаров и услуг. Информационная и телекоммуникационная индустрия превратились сегодня в ключевой сектор экономики развитых стран. Они считают необходимым ввозить товары широкого потребления, но вывозить продукты информационной индустрии, и на их продаже зарабатывать национальное богатство.

Информационные технологии стоят гораздо дороже, чем товары широкого потребления, что обеспечивает развитым странам высокий уровень жизни. А лидерство в информационных технологиях дает им возможность по-прежнему претендовать на политическое лидерство в мире.

Благодаря слиянию компьютерной и телекоммуникационной революций стали создаваться информационные сети огромных масштабов, в том числе глобальные. По этим сетям можно гораздо быстрее передавать, находить и обрабатывать необходимую информацию.

Под информационными ресурсами понимается информация, зафиксированная на материальном носителе и хранящаяся в информационных системах (библиотеках, архивах, фондах, банках данных и др.). Информационный ресурс может принадлежать одному человеку или группе лиц, организации, городу, региону, стране, миру. Информационный ресурс является продуктом деятельности наиболее квалифицированной части общества.

Между информационными и другими ресурсами существует одно различие: всякий ресурс после использования исчезает, а информационный — нет, им можно пользоваться много раз, он может копироваться без ограничений. Более того, информационный ресурс имеет склонность увеличиваться, так как использование информации редко носит совершенно пассивный характер, чаще при этом появляется дополнительная информация.

Информационные ресурсы делятся на государственные и негосударственные. По категориям доступа информация делится на открытую и с ограниченным доступом. Информация с ограниченным доступом делится, в свою очередь на информацию, составляющую государственную тайну и просто конфиденциальную.

Этапы развития технических средств и информационных ресурсов. Из истории человечества нам известно, что некоторые научные изобретения сильно повлияли на ее ход, на развитие цивилизации. К их числу относятся изобретение колеса, парового двигателя, открытие электричества, овладение атомной энергией и пр. Процессы резкого изменения в характере производства, к которым приводят важные научные открытия, принято называть научно-технической революцией (НТР).

Появление компьютерной техники во второй половине XX века стало важнейшим фактором научно-технической революции.


  • Первый этап начинается с создания первой электронно-вычислительной машины ENIAC (ЭВМ) в 1945 году. Приблизительно в течение 30 лет компьютерами пользовалось небольшое число людей, в основном в научной и производственной областях.

  • Второй этап начинается в середине 1970-х годов и связан с появлением и всеобщим распространением персональных компьютеров (ПК). ПК стали широко применяться не только в науке и производстве, но и в системе общего образования, сфере обслуживания, быту. ПК вошли в дом как один из видов бытовой техники наряду с телевизорами, магнитофонами.

  • Третий этап связан с появлением глобальной компьютерной сети Интернет. С появлением Интернета ПК, который помещается на письменном столе, стал окном в огромный мир информации. Появились такие понятия, как «мировое информационное пространство», «киберпространство». Именно появление Интернета дает возможность говорить о том, что в истории цивилизации наступает этап «информационно-ориентированного общества».

С распространением ПК возникает понятие компьютерной грамотности. Компьютерная грамотность — необходимый уровень знаний и умений человека, позволяющий ему использовать ЭВМ для общественных и личных целей.

На первом этапе истории ЭВМ компьютерная грамотность сводилась к умению создавать программы. Программирование изучалось главным образом в высших учебных заведениях, владели им ученые, инженеры, профессиональные программисты.

На втором этапе под общим уровнем компьютерной грамотности стали понимать умение работать на ПК с прикладными программами, выполнять минимум действий в среде операционной системы. Компьютерная грамотность на таком уровне становится массовым явлением благодаря обучению в школе, на многочисленных курсах, в самостоятельном режиме.

На третьем, современном этапе, важным элементом компьютерной грамотности становится умение пользоваться сетью Интернет и его ресурсами.

Один из этапов перехода к информационному обществу — компьютеризация общества, где все внимание отдано развитию и всеобщему внедрению компьютеров, обеспечивающих оперативное получение результатов переработки информации и ее накопление.

Основной инструмент компьютеризации — ЭВМ (или компьютер). Человечество проделало долгий путь, прежде чем достигло современного состояния средств вычислительной техники.




Выполненное задание сдать преподавателю до 29.11.2017г.